

уральский научно-практический центр радиационной медицины Urals Research Center for Radiation Medicine

Pryakhin E.A.¹, Tryapitsina G.A.^{1,2}, Osipov D.I.¹, Atamanyuk N.I.¹, Peretykin A.A.¹, Geras'kin S.A.³, Trapeznikov A.V.⁴, Akleyev A.V.^{1,2}

- ¹ Urals Research Center for Radiation Medicine, Chelyabinsk
- ² Chelyabinsk State University, Chelyabinsk
- ³ Russian Institute of Radiology and Agricultural Ecology, Obninsk
- ⁴ Institute of Plant and Animal Ecology UrB RAS, Yekaterinburg

INDIRECT ECOLOGICAL EFFECTS IN RADIOACTIVELY CONTAMINATED FRESHWATER ECOSYSTEMS

Location of the reference and PA «Mayak» industrial reservoirs. Dots in the figure mark sampling stations

Estimated dose rate values for hydrobionts, µGy/h (Erica Assessment Tool)

Indirect ecological effects of chronic radiation exposure

- 1. Adaptation / disadaptation at different levels of biological organization
- 2. Interaction of radiation with other abiotic factors
- 3. Changes of biotic relationship in biocenosis

1. Subcellular level: changes of chromosome aberrations frequency in the meristem cells of onion root after acute gamma-radiation

1. Subcellular level: changes in frequency of peripheral blood erythrocytes with chromosome aberration s in fish from radioactively contaminated reservoirs

 Cellular level: changes of frequency of apoptosis in peripheral blood erythrocytes of fish from radioactively contaminated reservoirs

3. Organism systems level: increase in the portion of erythropoietic dividing cells in fish from radioactively contaminated reservoirs

 Population level: change in cells volume of green algae culture (*Scenedesmus quadricauda*) isolated from radioactively contaminated reservoirs

4. Population level: shortening of cell cycle duration (increase in growth rate) of green algae culture (*Scenedesmus quadricauda*) isolated from radioactively contaminated reservoirs

4. Population level: increase of radioresistance of green algae cultures (*Scenedesmus quadricauda*) isolated from radioactively contaminated reservoirs.

 Level of communities: preservation of phytoplankton biomass while reducing species diversity

Interaction of radiation with abiotic factors

1. Three variants of the interaction of factors: additive effect; antagonism; synergism.

Isobologram (ED_{50}) of the combined effect of the nitrates and acute gamma exposure on the growth of the algae Scenedesmus quadricauda

Isobologram (LD_{50}) of the combined effect of the sodium nitrate and acute gamma exposure on a 30-day survival of the oligochaetes (T. tubifex)

Changes of biotic relationship in biocenosis

Dependency of zooplankton biomass on phytoplankton biomass in comparison reservoir

Biotic (trophic) interactions of primary producers and primary consumers (phytoplanktonzooplankton) in the studied reservoirs

Dependency of zoobenthos biomass on dose rate

Realization of indirect effects of chronic radiation exposure

Thank you for attention!