Fostering of Integrated Global Networks through Leveraging and Positive Feedback Loops Tamara Yankovich, Gerhard Proehl, and Diego Telleria Division of Transport Radiation and Waste Safety

IUR International Workshop on Worldwide Harmonization of Radioecology Networks

Aix en Provence, France, 19-20 June 2014

IAEA International Atomic Energy Agency

Summary: (starting from where we left off...)

- The IAEA is responsible for activities of coordination, information sharing and development of safety standards.
- Activities are carried out in a harmonized manner, with consideration of those undertaken by other organizations.
- For example, international model validation programmes provide a forum for evaluation of tools and standardization of approaches to assess potential risk. Findings from such studies can then be considered in IAEA safety standards (e.g., updated SRS 19).
- In addition, through such programmes, international data are compiled to gain understanding of natural processes for a range of situations.

Summary: (starting from where we left off...)

- The outputs of activities, such as MODARIA, form the technical basis that informs higher-level IAEA guidance documents.
- One example is IAEA SRS-19, which provides guidance on predicting radionuclide transport in the environment and corresponding doses .
- Through such activities and programmes, it would be useful to identify mechanisms to leverage such efforts and strengthen international networking.
- In this way, self-perpetuating positive feedback loops can be created to the benefit of the international community.

Let's do it!

The Basis – the Safety Fundamentals

IAEA Safety Standards for protecting people and the environment

Fundamental Safety Principles

Jointly sponsored by Euratom FAO IAEA ILO IMO OECD/NEA PAHO UNEP WHO ILO IMO OECD/NEA PAHO UNEP WHO ILO IMO OECD/NEA PAHO UNEP WHO ILO IMO OECD/NEA PAHO UNEP WHO

Safety Fundamentals No. SF-1

"The fundamental safety objective is to protect people and the environment from harmful effects of ionizing radiation."

Radiological Impact Assessment

Some Possible Objectives - A Rough Breakdown -

Tool Development How to?

Tool Testing

How good?

Compilation, Evaluation & Harmonization (?)

Where can this fit?

Compatibility, Consensus & Guidance

Where do we go from here?

Key Steps in Harmonized Protection

Tool Development

e.g., CROM (SRS-19), RESRAD codes, ERICA, PC-CREAM, CROMERICA (& others)

Tool Testing

Compilation, Evaluation & Harmonization

Compatibility, Consensus & Guidance MODARIA, EMRAS-II, EMRAS (& predecessors – VAMP, BIOMASS, etc.)

e.g., IAEA guidance on Radiological Environmental Impact Analysis, Revision of Safety Review Series (SRS)-19, etc.

IAEA, ICRP, UNSCEAR, IUR, BIOPROTA, etc.

Some Cases and Examples:

- Case 1: Model validation programmes (e.g., MODARIA)
- Case 2: Update to Safety Guidance (e.g., SRS 19)

Nuclear Safety Resolution September 2013

General Conference

GC(57)/RES/9 Date: September 2013

General Distribution Original: English

Fifty-seventh regular session Item 15 of the agenda (GC(57)/24)

Measures to strengthen international cooperation in nuclear, radiation, transport and waste safety

60. Encourages the participation of Member States in the **Modelling and Data for Radiological Impact Assessments (MODARIA)** programme, launched in November 2012 to foster, develop and maintain capabilities in assessing radiological impacts from radionuclides being released or extant in the environment;

Case 1: Model Validation Programmes - Needs for Modelling -

Requirements for assessment models

- Simple and transparent
- Harmonized
- Widely applicable
- Conservative, but not too pessimistic
- Provide certainty with to legal issues

Sound scientific base of assessments of radiological impacts

- Understand underlying transfer mechanism and exposure processes
- Explore possibilities and limitations of modelling
- Needed in any licensing process
- Monitoring
 - Optimize monitoring
 - Interpretation of monitoring results
 - Appropriate allocation of efforts for environmental monitoring

Past Model Validation Programmes:

- VAMP: Validation of Model Predictions (1988-1996)
 - Mainly scenarios from Chernobyl release
 - Transfer data collection

• BIOMOVS: BIOspheric Model Validation Study, with SSI, Sweden, 1991-1996

- short- and long-term releases
- power reactors, solid waste disposal repositories, uranium mill tailings
- **BIOMASS (1996-2001)**
 - Chernobyl scenarios
 - Environmental clean-up
 - Long-term environmental impact of waste disposal: *Reference biospheres*
- EMRAS (2003-2007)
 - Scenarios from routine and accident situations
 - Transfer data review and update
 - Biota model testing and comparison
- EMRAS II (2009-2011)

FΔ

Continuation of EMRAS

Current Programme is MODARIA

IAEA: VAMP (VAlidation of Model Predictions, 1988-1996) and BIOMASS

(Environmental Modelling for RAdiation Safety), 2003-2007 and EMRAS II

(BIOsphere Modelling and ASSessment, 1996-2001), EMRAS

which ran from 2009 to 2011.

AEA http://ww

http://www-ns.iaea.org/projects/modaria/default.asp?l=116

Identification of MODARIA Topics:

• Questionnaire in 2012

- Sent to potential participants and organisations involved in previous programmes internationally
- Scientific interests and gaps were identified to reflect needs in Member States
- 160 responses were received from 49 Member States
- Preparation Meeting in March 2012
 - Developed proposals for a new programme
- Presentation of identified topics during the 1st
 Technical Meeting and finalization of Working Groups.

MODARIA Working Groups:

• Theme 1: Remediation of Contaminated Areas

- WG 1 *Remediation strategies* and decision aiding techniques
- WG 2 Exposures in *urban environments* and effect of remedial measures
- WG 3 Radiological impacts from NORM and legacy sites and remediation

Theme 2: Uncertainties and Variability

- WG 4 Analysis of radio-ecological data
- WG 5 **Uncertainty** from routine discharges of radionuclides
- WG 6 Environmental modelling for radioactive waste disposal facilities
- WG 7 Models for accidental tritium releases
- Theme 3: Exposures and Effects on Biota
 - WG 8 Transfer and exposure models for flora and fauna
 - WG 9 Effects on populations of wildlife species
- Theme 4: Marine Modelling
 - WG 10 Dispersion and transfer in the marine environment

Positive Feedback Loops:

Needs

Tool Development and Testing

Member States Needs for Tools, Parameter Values, Capacitybuilding VAMP BIOMOVS BIOMASS EMRAS EMRAS II MODARIA BIOPROTA etc.

Outcomes

- Knowledge sharing
- Linkages with other networks
- New ideas
- Gap filling
- New knowledge and new tools

Positive Feedback

Case 2: Incorporation of Current Scientific Knowledge into Safety Guidance

SRS 19: Assessing Public Exposure and Environmental Impacts due to Radioactive Discharges from Facilities and Activities

- Currently under revision.
- Being expanded into three volumes to update the previous single volume.
- SRS 19 (Volumes 1 and 2) are focused on human protection and are fairly far along in terms of drafting:
 - Volume 1: "Screening Assessment of Public Exposure"
 - <u>Volume 2</u>: "Generic Models for Use in Assessing the Impact of Radioactive Discharges"
- SRS 19 (Volume 3) will be focused on development of screening-level assessment of environmental impacts for Planned Exposure situations (flora and fauna).
- The first consultancy meeting for the preparation of SRS 19 (Volume 3) was held in December 2013.

Objective of the Revision of SRS 19:

- **To provide an** *"up-to-date, structured approach to the prospective screening assessment of the impact of radioactive discharges on the general public in planned exposure situations"*
- Assessment of doses to the representative person from planned releases
- Emphasis on ease of use

Why Revise SRS 19?

Facilitate application of screening models

- Include different levels of assessment
- Include assessments of exposures to flora and fauna
- Updated database

Updated Database:

- SRS 19 developed in the early 1990s
- New data compilations (from IAEA Model Validation Programmes)
 - TECDOC 1616
 - o TRS 472
 - Handbook on transfer parameters to assess concentrations in wildlife (EMRAS II)
- New BSS (GSR-3)
 - Representative person
 - o Biota

Scope and Application:

• Applications:

- Environmental impact assessments of facilities and activities;
- Safety assessments of facilities and activities;
- Independent verifications of the safety assessments;
- Optimization of protection and safety; and
- Establishment of operational limits and conditions related to public exposure and protection of the environment.

Generic Dose Assessments for Screening Purposes:

- Indication of the magnitude of the radiological impact of a discharge.
- Approaches intended to be conservative.

• Not to be applied for:

- Emergency planning or emergency response,
- Long-term assessments for waste disposal facilities, where, for example, the contamination of ground water could be relevant.
- Dose assessments outside the scope of radiation protection, such as risk projection and epidemiological studies, individual-related assessments,

Positive Feedback Loops:

Outcomes from Tool Testing and Development

- Knowledge sharing
- Linkages with other networks
- New ideas
- Gap filling
- New knowledge and new tools

IAEA SAFFT STANDARDS SFRIFS **Update to SRS 19** (to provide guidance to demonstrate protection of people and the environment) SAFETY GUIDE No. WS-G-2.3 ATOMIC ENERGY AGENCY

Development of

Safety Guidance

Positive Feedback

Application of Guidance to Develop New Tools

> Development of new CROMERICA tool

> > **ERICA tool**

EA

Summary: (full circle...positive feedback loops)

- The outputs of activities, such as MODARIA, form the technical basis that informs higher-level IAEA guidance documents.
- One example is IAEA SRS-19, which provides guidance on predicting radionuclide transport in the environment and corresponding doses .
- Through such activities and programmes, it would be useful to identify mechanisms to leverage such efforts and strengthen international networking.
- In this way, self-perpetuating positive feedback loops can be created to the benefit of the international community.

Let's do it!

Thank <u>YOU</u>!

